Skip to contents

Calculates p-values and adjusted q-values for a given effect in a specific cell type.

Usage

compute_significance(
  input_list,
  cell_type,
  effect_name,
  beta_name = "beta_estimate",
  standard_error_name = "standard_error_matrix",
  sided = 2,
  direction = "pos"
)

Arguments

input_list

A list of model outputs with beta and standard error matrices.

cell_type

Character. Cell type of interest.

effect_name

Character. Name of the covariate/effect of interest.

beta_name

Name of the beta matrix (default: "beta_estimate").

standard_error_name

Name of the standard error matrix (default: "standard_error_matrix").

sided

Integer. 1 for one-sided, 2 for two-sided test.

direction

Character. "pos" or "neg", used if sided = 1.

Value

A data frame with columns: name, pval, and qval.